"THE GOOD
UNITED STATES
AI GROUP"

intended & unintended consequences of Ai

image85

1.  DR. QIN (TIM) SHENG

CO-FOUNDER

 - MEMBER - ADVISOR 

THE GOOD US AI GROUP

( GoodUSAi.com )


 Dr. QIN (TIM) SHENG

BS, MS, Ph.D


Nanjing University, China

BS 1982  


Nanjing University, China

MS 1984


University of Cambridge, UK

Post Doc. UCL, London

Ph.D in Mathematics  1990


BAYLOR UNIVERSITY MATHEMATICS PROFESSOR

COMPUTATIONAL AND APPLIED MATHEMATICIAN 


BAYLOR DEPARTMENT OF MATHEMATICS

and

BAYLOR UNIVERSITY CENTER FOR ASTROPHYSICS, SPACE & ENGINEERING RESEARCH


BAYLOR UNIVERSITY

WACO, TEXAS


________________

COLUMN  # 1

\________/

\_____/

V



ARTIFICIAL INTELLIGENCE

INTRODUCTION


Artificial Intelligence (AI) systems will play a major role in every aspect of life on earth.  It will change the world we live in. AI  will improve the speed, accuracy, efficiency, and safety of human decision making, however,  it will carry the risk of some unintended circumstances.   If fact, AI may turn out to be a greater world problem than: nuclear security, climate change, civil unrest, chemical- biological warfare, terrorism, cyber-security, asteroid impact, loss of coral and plankton,  alien visitors, power grid  destruction, ozone depletion,  loss of internet, poverty, hunger, lowering  water supply, sanitation or  lack of education. 


Is it possible that AI will be an existential event once it reaches the human level and beyond?


MAIN THRUST OF THIS WEB SITE 


THE MAIN THRUST OF THIS WEB SITE IS NOT THE DARK / EVIL SIDE OF AI BUT RATHER  RESEARCHING, EDUCATING, TEACHING, PROMOTING, AND APPLYING: (1)  SAFETY; (2) INTEGRITY; (3) HONESTY; (4) ETHICS; (5) ZERO BIAS; (6) EMPATHY; (7) RESPONSIBILITY; AND (8) SOCIAL BENEFIT WITH REGARD TO ALL ASPECTS OF GOOD UNITED STATES ARTIFICIAL INTELLIGENCE (AI)  INCLUDING  (BUT NOT LIMITED TO) MACHINE LEARNING, DEEP LEARNING, ROBOTICS, ROBOTIC VISION, NATURAL LANGUAGE PROCESSING, VOICE RECOGNITION,  SPEECH RECOGNITION,  FACIAL RECOGNITION, DRONES, ARTIFICIAL NEURAL NETWORKS, AND INTERNET OF THINGS, 


______________________


PROGRESS ALWAYS COMES 

AT A COST


Authman Aperture of Coding Dojo on June 1, 2018 stated the following in his article "Ethics and Unintended Consequences  of Technology:  "Progress always comes at a cost. Paper fundamentally changed the way information was stored and distributed, but its production contributes to deforestation. Industrialization increased our standard of living, but has led to much pollution and arguably, even some social ills. The benefits brought by the internet are too many to mention, yet viral misinformation, vast erosion of privacy, and the diminishing patience of society as a whole were all unintended consequences. Not even medicine is free from side effects. This should come as no surprise because hindsight is always twenty-twenty. Rarely at the time of invention is a creator the best judge of how their system will be used, or truly knows what good or harm will come of it. Understanding this, as technologists, we ought to give pause and reflect deeply before taking on a project."


_____________________


SOME BASIC DEFINITIONS:


A.  Artificial Intelligence:


1.  Artificial Intelligence (AI) is a subset of Data Science.  Data Science is a subset of Computer Science.


AI (as a subset of data science) is the ability of  a machine  and/or of computer software programs  to  find, assemble, process, calculate, translate, think, reason, learn, problem-solve, identify risks, create speech recognition, develop human-like speech generation, incorporate feedback,  remember,  reduce errors, exercise continuous improvement, and potentially act (to some extent). It could be performing in a manner that some people would consider it as ... "intelligent."  


AI is a field of science covering how computers can make decisions as well as (and sometimes better than) humans.  AI needs to be able to understand humans. Machine learning, a subset of AI, refers to the popular modern-day techniques for creating software that learns from data. It involves learning how to carry out a task from data without being programed to carry out the task. For example, facial recognition is machine learning. Applications of machine learning normally use a neural network.  Neural network is a computer system mimicking the human  brain.

An example of deep learning is speech recognition.


_______________________


Here is a good link to 6 definitions of AI from Forbes Magazine:

https://www.forbes.com/.../the-key-definitions-of-artificial-intelligence-ai-that-explain...   


There is also included in this AI definition the difference between Weak/Narrow AI and Strong/Broad AI.  Strong AI genuinely simulates human reasoning while Weak AI  is just focusing on getting a system to work without simulating human cognitive 

behavior (thinking the way a human would think). Today most of the AI work falls somewhere between Weak AI and Strong AI.   Let's call that Mid-Range AI.

           

 Major Artificial Intelligence Components:


The following items are some of the  major components that make up AI:


1. Machine Learning (ML) - Machine Learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine Learning focuses on the development of computer programs that can access data and use it to learn for themselves. 

It allows systems to learn from data, identify repeating patterns and making decisions without explicit instructions or human intervention. It enables companies to save time and resources. 


2. Big Data - According to Oracle: Put simply, big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can't manage them. It includes structured and unstructured data.  There is a growing belief that data is more valuable than oil.  Before data can be used in an AI use case it must be cleaned, prepared, and labeled. Data is the heart of AI. Cleaning data involves eliminating duplicates, deleting extraneous data, and working with data by humans to get it ready for use with the appropriate AI algorithm for  a use case. 


  3.   Artificial Neural Networks - Artificial neural networks are one of the main tools used in machine learning. As the “neural” part of their name suggests, they are brain-inspired systems which are intended to replicate the way that we humans learn. Neural networks consist of input and output layers, as well as (in most cases) a hidden layer consisting of units that transform the input into something that the output layer can use. They are excellent tools for finding patterns which are far too complex or numerous for a human programmer to extract and teach the machine to recognize.


  4.   Robotics (including Robotic Vision) - From Wikipedia, the free encyclopedia: “Robotics is an interdisciplinary branch of engineering and science that includes mechanical engineering, electronic engineering, information engineering, computer science, and others. Robotics deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing. These technologies are used to develop machines that can substitute for humans and replicate human actions. Robots can be used in many situations and for lots of purposes, but today many are used in dangerous environments (including bomb detection and deactivation), manufacturing processes, or where humans cannot survive (e.g. in space). Robots can take on any form but some are made to resemble humans in appearance. This is said to help in the acceptance of a robot in certain replicative behaviors usually performed by people. Such robots attempt to replicate walking, lifting, speech, cognition, and basically anything a human can do. Many of today's robots are inspired by nature, contributing to the field of bio-inspired robotics.”  


        From Wikipedia, the free encyclopedia:   "Robot vision or a Vision Guided Robot (VGR) System is basically a robot fitted with one or more cameras used as sensors to provide a secondary feedback signal to the robot controller to more accurately move to a variable target position. VGR is rapidly transforming production processes by enabling robots to be highly adaptable and more easily implemented, while dramatically reducing the cost and complexity of fixed tooling previously associated with the design and set up of robotic cells, whether for material handling, automated assembly, agricultural applications, life sciences, and more.


  5.   Facial Recognition - A facial recognition system is a technology capable of identifying or verifying a person from a digital image or a video frame from a video source. There are multiple methods in which facial recognition systems work, but in general, they work by comparing selected facial features from given image with faces within a database. It is also described as a Biometric Artificial Intelligence based application that can uniquely identify a person by analyzing patterns based on the person's facial textures and shape. 


    6.  Speech Recognition - Speech recognition is the ability of a machine or program to identify words and phrases in spoken language and convert them to a machine-readable format. Rudimentary speech recognition software has a limited vocabulary of words and phrases, and it may only identify these if they are spoken very clearly.


7. Voice Recognition - The ability of hardware and software to recognize the voice of a person (as unique as a fingerprint). Differs from speech recognition 's ability to understand words - not the identity of a person.


8. Deep Learning -  Networks  capable of learning from unstructured data when the network is unsupervised.


9. Internet of Things  (IoT) -  Computer components embedded in everyday objects with capabilities of sending and receiving data and performing other activities.  

The oil & gas industry is especially ripe for the application of IoT with potential benefits in safety, the environment, reduced spills, reduced carbon emissions,  improved monitoring, improved drilling strategy, cost reduction, time savings, and increased revenue.               


Here is a good high level description of how IoT works, as so stated in LEVEREGE's ebook "An Introduction to Internet of Things:"

    

"'An IoT system consists of sensors/devices which “talk” to the cloud through some kind of connectivity. Once the data gets to the cloud, software processes it and then might decide to perform an action, such as sending an alert or automatically adjusting the sensors/devices without the need for the user . 

But if user input is needed or if the user simply wants to check in on the system, a user interface allows them to do so . Any adjustments or actions that the user makes are then sent in the opposite direction through the system: from the user interface, to the cloud, and back to the sensors/ devices to make some kind of change."


 For a deeper understanding of Iot see: https://www.leverege.com/iot-intro-ebook

   

10.  Drones - An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. UAVs are a component of an unmanned aircraft system (UAS); which include a UAV, a ground-based controller, and a system of communications between the two. The flight of UAVs may operate with various degrees of autonomy: either under remote control by a human operator or autonomously by onboard computers. 


         Compared to manned aircraft, UAVs were originally used for missions too "dull, dirty or dangerous” for humans. While they originated mostly in military applications, their use is rapidly expanding to commercial, scientific, recreational, agricultural, and other applications, such as policing, peacekeeping,  and surveillance, product deliveries, aerial photography, agriculture, smuggling, and drone racing. Civilian UAVs now vastly outnumber military UAVs, with estimates of over a million sold by 2015, so they can be seen as an early commercial application of autonomous things, to be followed by the autonomous car and home robot.


11. AI Algorithms  are  mathematical  instructions  that provides  step by step procedures  for calculations.

____________________


FIRST THINGS FIRST:

OK - first things first.  We start first with data science (DS),  according to Russ Rankin and Dr. Stephen Gardener  - Baylor 

Magazine - Fall Issue 2018 -  "Data Drive" - Data Science  is a broadly  interdisciplinary field that draws heavily on statistics  and computer science  and has applications in business, engineering, medicine, law, education, sociology, political science, and other disciplines.   Data science is the foundational field for development of AI, robotics, and other technologies that can mimic or transcend  many aspects of human intelligence." 


_________________________


TED MED Video - Artificial Intelligence 

https://m.youtube.com/watch?v=rCkXW079cDM 

This is a useful video on medical and other AI applications.


_________________________



ROCK & ROLL:


 The term "Artificial intelligence"  dates back to about the mid-1950's. About  1956. (The mid 1950's were famous for the development of creative  "Rock & Roll" music.  Remember Chuck Berry, Little Richard, Jerry Lee Lewis, Bo Diddley, Elvis,  Buddy Holly, Johnny Cash, Connie Francis, etc, etc?  They  also   were bursting in on the music scene in the mid-1950's.  So, it was only fitting for that time period to also be the time  of the start of development of creative AI.  AI was first named and identified

 in 1956 by Stanford professor / researcher John McCarthy as a sub-field of the larger academic study of computer science.  


__________________


DEEP LEARNING VIDEO (UNDER AI)  EXAMPLE: 


https://www.newsweek.com/artificial-intelligence-cucumber-farm-raspberry-pi-495289


___________


AS THE INTENDED AI CIRCUMSTANCE, AI SHOULD BE BENEFICIAL, ETHICAL, HAVE GOOD, ETHICS, BE GUIDED BY COMMON SENSE, BE UNBIASED, AND OPERATE WITH COMPLETE INTEGRITY.


 AI duplicates the human thought process and behavior.  It should act in a beneficial human - like way that is intelligent, brilliant, rational, unbiased, guided by common sense, responsible, reasonable, timely, and  (of course) ethical with integrity.  


______________________



THE TIME IS RIGHT:


AI is possible nowadays due to: 

(1) giant increases in computational capabilities; (2) huge growths in data (big data); (3) focusing on specific / unique problem issues to be addressed;  (4) being able to timely  convert those unique issues / problems into  targeted knowledge engineering rules (algorithms) so that AI systems can learn; (5) efficiently plugging the resulting  rules into appropriate AI systems; and (6) allowing AI systems to learn the rules automatically.


_________________________


POTENTIAL FUTURE 

OF AI:


Here is some November 2018 LinkedIn information from Accenture (post by Accenture on LinkedIn):


"AI has the potential to boost rates of profitability by an average of 38 percentage points and could lead to an economic boost of US$14 trillion in additional gross value added (GVA) by 2035."


Accenture further stated in the same post: "Artificial Intelligence could double annual economic growth rates by 2035 by changing the nature of work and spawning a new relationship between both human and machine. 


The impact of AI technologies on business is projected to boost labor  productivity by up to 40 percent by fundamentally changing the way work is done and reinforcing the role of people to drive growth in business."


 Accenture additionally stated in the same post: "AI at its core combines intelligent technology with human ingenuity. Probably the most dramatic change that AI is driving for people is the nature of work.  And collaborative intelligence is very important because this is about how we take the best capabilities of a person and the best capabilities of software or machine or AI and put that together to create a new type of job. The 

ideal is that there’s something missing 

from the discussion around AI today 

and it’s what’s happening in the middle between humans and machine. We tend to think about what humans are good at, which is communication, emotion, imagination, generalization, and so forth. And then you think about what machines are good at -- memorization, prediction, transaction, and more. There’s a lot of opportunity in that area in the middle and the discussion that has been missing is about how do you put humans and technology together to do new things and create new capability together. 

Human and AI technology are connected and will change the way we work and solve business problems. AI will also re-imagine society, in how we use it to solve social issues, and in how we apply it responsibly. Responsible AI is necessary for AI to come together across business, people and society 

and be successful.

There was no better place to talk 

about the last 25 years of technology, 

and the next 25 years when we will see 

epic change driven by AI. The Information Age has brought us to where we are today. The next period will define our future and change the world."


_________________________



"BENEFITS OF AI  CAN BE ENORMOUS: 


1.  Humans will be safer during disasters;

2. Better care for the aging;

3. More independence for the elderly;

4. Reduction of traffic accidents;

5. Could become a tightly  coupled cognitive unit with humans;

6. AI can augment our brains;

7. AI can augment our bodies;

8. It can make humans better at everything;

9.  Great improvements to orthotics;

10. Wide applications to exoskeletons;

11. Improvement to human senses (vision, hearing, etc).

12. AI can help to solve climate change;

13. AI can quickly review millions of pages of documents;

14. AI can help to cure diseases;

15. Anticipated to greatly assist with space travel;

16. Improved internet access;

17. Use of robots powered by AI in homes;

18. Wide-spread embedding of AI;

19. Prevent environmental catastrophes; 

20. Creation of more free time for humans to be more creative.

21. Improves ability to help customers.

22. Improves  e-commerce.

23. Chat boxes.

24. Better decisions and fewer mistakes.

25. Assisting humans with augmented

intelligence.

26. Help compose music.

27. Improved gaming and media.

28. Help in the hospitality and restaurant business.

29. Improve the back office. 

30. Bank loan determination.

31. Fraud determination. 

32. Assisting in ancestry research.

33. AI serving as an enabler.

34. Potential wide-spread access and use of open-source AI world-wide.

35.  Airlines can save money annually on fuel savings in-flight and during take-off and landing (such as Quantas Airlines saving $40M in 2018) due to AI).

36. Assisting air traffic control to improve safety, efficiency, and decision making.

37. Use of AI and ML in the oil and gas business to address safety, exploration, discovery, drilling, production, analysis, and distribution.


______________________


POTENTIAL AI  RISKS AND THREATS


The numerous legal  and other risks that arise out of the use of AI including: machine learning ("ML"), deep learning (DL), robotics, robot vision (RV), internet of things (IoT), signal processing (SP), neural networks (NN), natural language (NL) and unstructured data (UD) or Dark Data (DD)  that needs to be anticipated and analyzed. 


In the article:   "Data, Data, Everywhere",  Baylor Arts and Sciences, Special Issue, Research in Arts & Sciences, Fall 2018  (by Julie Engebretson) it states: "It is estimated that about 16.3 Zettabyes of data - the equivalent of 16.3 trillion  Gigabytes  - is produced in the world each year."  

Wow !  Now that's big data !

 

 Dark  Data (DD) is sometimes  data that  is obtained through numerous computer network operations but because it is so disorganized  it is generally not used  to obtain insights or for decision making  .

______________________


HERE ARE A FEW OF THE AI RISKS AND THREATS


1.  If a motor vehicle accident involves AI, trying to find the liable party is difficult and confusing. (i.e. a autonomous car hits another vehicle).

2.    AI often has to identify vehicles, 

people, roads, sidewalks, traffic signals, buildings or other items. To do this, AI relies on robotic vision (cameras, radar, infrared, sonar, etc.), sensors, and recordings. Things may not look the same to AI as it does to humans. AI also can reflect the biases of the software/firmware designer/developer.

3   AI is getting getting closer to actual human-like consciousness. This is also often called: Super AI. 

4. Robots utilizing AI may sometime be seeking certain civil rights.

5. If AI commits or is involved in a crime who is guilty? 

6. Privacy rights of people are potentially being eroded with AI.  

7.   AI has been developing a very rapid rate. AI has outpaced applicable legislation.

8.  How will AI generated information be used in court? (No right of cross-examination, etc.);

9.  Mass unemployment;

10. Wars;

11. Autonomous weapons;

12. Mass surveillance; 

13. Discrimination;  

14. Improper actions of robo doctors;

15. Wrongful financial services actions;

16. Constructing algorithms improperly;

17. Improper healthcare issues;

18. Improper insurance issues;

19. Ineffectively regulatory issues;

20. "Reasonable man" and "proximately caused"  issues in tort law;

21.  Non competitive antitrust AI issues .     

22.    In addition to the potential benefits of the quantum issues, we also need to keep an eye on the soon to be emerging  potentially harmful uses of quantum physics (QP), quantum computers (QC), quantum  mechanics (QM) and other quantum issues.

23. Eventuality of AI hacking and subversive activities involving rules, algorithms, data, and other and/or other components.

24.  Potential autonomous killing machines (except in very rare US military cases).

25. In the event of consciousness in AI, seek the embedding of ethics, clean data, bias, responsibility, error prevention, legal compliance, integrity, moral values, ethics, continuous human feedback, and proper social manners.

26. Danger of manipulation of data.

______________________


 AI CHALLENGES AND DANGERS TO DEMOCRACY AND PRIVACY IN THE US


Below is a great link to a very thought-provoking article on the AI dangers to democracy and privacy in the US:    


"Artificial Intelligence: Risks to Privacy and Democracy

Karl Manheim* and Lyric Kaplan" 

21 Yale J.L. & Tech. 106 (2019) 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3273016

__________________


HOW TO MITIGATE AI  RISKS AND THREATS


1. Understand the vast complexities of AI;

2.  Track AI reasoning;

3. Participate in rule making, algorithms development, and data gathering;

4. Use good clean data;

5. Allocate AI risk amount applicable to the parties due to benefits received by the applicable parties;

6. Start soon with Augmented    Intelligence applications, and then move on early  with narrow AI applications before arriving at strong AI applications;

7. Protect AI with IP such as patents and trade secrets;

8. Establish an AI team;

9. Recruit and retain AI talent; 

10. Humans will need to get smarter in order to deal with AI;

11. There needs to be a legal revolution with a focus on experiential  and  lifetime learning ; 

12. Participate in government regulation of AI;

13. Make AI secure;

14. Develop strong AI testing prior to deployment; and 

15.  Think like a robot.


Certain portions of this section on AI legal risks and AI mitigation actions have been summarized, extracted from, and/or derived from:

 A. Understanding the Legal Implications of Artificial Intelligence,

Perkins Coie, News – Insites 5/12/2018

-and-

B.  A Two-Minute Guide To Artificial Intelligence

Parmy Olson, Forbes – 10/3/2018


________________________



FOUR INTERESTING VIEW POINTS ABOUT AI:


1.  “The automation of factories has already decimated jobs in traditional manufacturing, and the rise of artificial intelligence is likely to extend this job destruction deep into the middle classes, with only the most caring, creative or supervisory roles remaining.”

— Stephen Hawking



2.  “What to do about mass unemployment? This is going to be a massive social challenge. There will be fewer and fewer jobs that a robot cannot do better [than a human]. These are not things that I wish will happen. These are simply things that I think probably will happen.”

— Elon Musk


3.  “You cross the threshold of job-replacement of certain activities all sort of at once.”

— Bill Gates


4.  Here is an interesting comment from the "ProjectAI" web site:


"The coming AI developments may change life and society as we know it faster and more deeply than the industrial revolution, the internet or anything mankind has ever experienced before. It is crucially important to consider the coming AI developments not as a theoretical exercise or academic subject of investigation, but as a very real development which will take a concerted effort by people from all walks of life working together to take action to ensure continued quality of life for mankind."


_________________________


"Getting Ready for a Robot-Only Future"   - Ben Dickerson - November 2018 -

"How To prepare for Employment in the Age of Artificial Intelligence"


"Contrary to popular belief, most AI systems currently act as a complement to humans instead of replacing them. According to expert estimates, we are still years away from general artificial intelligence and full automation. But eventually, there will come a day where robots will perform most tasks and the role of humans in the production cycle will be marginal.


It’s very hard to envision the dynamics of a robot-driven economy. But how will humans sustain their lives when robots take all their jobs?


Governments should impose an income tax on robots that replace humans, Bill Gates said in an interview with Quartz. The Microsoft founder proposed that the robot tax could finance jobs to which humans are particularly well suited. This can include taking care of elderly people or working with kids in schools, for which needs are unmet.


Other experts are endorsing the notion of a Universal Basic Income (UBI), or handing out unconditional money to all citizens. The concept has been around for centuries, but it is gaining traction as full automation starts to loom on the horizon.


There are many political, economic and ethical hurdles to the full implementation of the UBI, but pilot programs are underway. Governments as well as private firms are testing the concept in small scale.


We have yet to see how the accelerating evolution of AI will unfold, but what’s for sure is that fundamental changes lie ahead. While we can’t predict the future, we can prepare for its potential outcome as best as we can."

_________________________



Don't Miss This Video  About  a Computer Using Human-Like Intuition


Deep Mind - World's First General AI

See: https://www.youtube.com/watch?v=T//nUYcTuZJpM


_________________________



CHECK THIS GREAT LINK OUT !


HERE IS A GREAT LINK TO THE COGNILYTICA WEB SITE WHERE THEY LAY OUT A GREAT ONE-PAGE DESCRIPTION OF THE SEVEN PATTERNS OF AI.  


TAKE A LOOK AT THIS INFORMATION

https://www.cognilytica.com/2019/04/04/the-seven-patterns-of-ai  


OK.  Here are all of the previously-existing seven AI types that were recently identified by Cognilytica on their web site that apparently seem to repeat themselves in different combinations in all of the AI use cases that various entities have created.  Some use cases make up just a single AI type for their use case application while others combine a few different AI types together to create their use case.


Here are seven AI types:


https://www.cognilytica.com/2019/04/04/the-seven-patterns-of-ai  


A.  Goal-Driven System is using machine learning to give the AI system the ability to learn through trial and error in finding the optimal solution to a problem. The AI Chess win is an example of this.


B.   Autonomous Systems (AS) are systems that are able to  

perform a task, goal, or interaction with minimal to no human  

involvement or labor. The primary objective of the  autonomous systems type is to minimize human labor.  Autonomous vehicles and drones are examples of this AI type.

 

C.  Hyper-Personalization (HP) is defined as using machine learning (ML) to develop a very unique profile of each individual human, and having that special profile learn and adapt for a wide variety of purposes, including content, products, personalized recommendations,  personalized healthcare, finance, and other specific one-to-one activities.  Advertising, finance, medical/health care, and fitness are some of the AI uses of HP.


D.  Predictive Analytics & Decision Support  is using ML to   

understand  how learned patterns of data can assist in          predicting the future.  It also assists humans in making  decisions about the future using what it learned from data and 

other information. It is all about helping humans make better      decisions. This application of AI is primarily intended to assist 

humans to figure out an answer to a problem. The human is still making the decision but it is ML helping the humans make 

the better decision.


E.  Conversational / Human Interaction is the use of machines

in communicating with humans through natural conversation and including voice, text, images, and other forms. The goal is to create communication between machines and humans. This is enabling machines to interact with humans the way that humans interact with each other. 


F.  Pattern & Anomaly Detection is the AI type that has the ability to find which one of the things is like the other and which is not. The goal is to find anomalies in data and indicate what looks out of the ordinary such as fraud detection and risk analysis.  


G.  Recognition is the AI type using machine learning to identify objects or other things within some form of unstructured content.  Use cases include image recognition, facial recognition, sound recognition, audio recognition, item detection, handwriting detection, text recognition, and gesture detection. The recognition AI type is one of the most widely used and adopted of all AI use types.


______________________________________________>

CONTINUE TO COLUMN #2

___________________>

_________________________


ABOUT THE GROUP:


 The "Group" (The Good United States Artificial Intelligence Group) is not a company, LLC, partnership, corporation, joint venture, proprietorship or any other legal or business entity. It is just an informal number of individuals loosely assembled that has some unifying relationship. In our case, that underlying relationship is the education, safety, ethics, integrity, honesty, non-biasedness, empathy, and social good of Ai (in all of Ai's forms) as Ai transitions into more and more of our lives.  We look forward to good beneficial Ai --- not bad Ai.  


To quote our GoodUSAi.com Member - Dr. Qin Sheng - "We need to let people know more about our interests, expertise and endeavors. Let’s do the best to support this wonderful country!"


__________________________


WORK IN PROGRESS


"Do it -- Fix It -- Try It"

Chaotic action is preferable to orderly inaction 


This web site will always be a ..."Work In Progress."  Changes, updates, additions, and deletions will be made monthly. The last update to this web site was made on:    

July 18,  2019


======================


(C) COPYRIGHT JOHN E. MILLER, RUSS PETERMAN,  AND DR QIN SHENG

2018 - 2019

ALL RIGHTS RESERVED (EXCEPT AS NOTED HEREIN WHERE ANOTHER PARTY OWNS  A COPYRIGHT  INTEREST )   


 ,,,,,,,,,,,,,,,,,,,,,,,,



Cookie Policy

This website uses cookies. By continuing to use this site, you accept our use of cookies.


++++++++++++++++++++++



image86

                                                                                                                                                                                                  

2.  RUSSELL (RUSS) K. PETERMAN 

CO-FOUNDER

 - MEMBER - ADVISOR 

THE GOOD US AI GROUP

( GoodUSAi.com )

  

  RUSS PETERMAN

BS, MS, Business Management


University of Texas - Austin, Texas

BS


University of Texas - Austin, Texas

MS


University of Texas - Austin, Texas 

 {Physics)


University of Colorado

(Business Management)


THE PRESIDENT OF

PETERMAN CONSULTING ASSOCIATES

AUSTIN, ROUND ROCK, GEORGETOWN, TEXAS


_______________

COLUMN  # 2

\________/

\______/

V


HERE IS A LINK TO 10 CURRENT EVERYDAY AI APPLICATIONS:

https://beebom.com/examples-of-artificial-intelligence/ 

_________________________


FOLLOW THE MONEY:


(To some limited extent, some of Johnny's commentary in this "Three Kinds of  Money" section just below  as well as the "AI Solutions Might Not Work Out" section also just below,  may be summarized, paraphrased, derived from or extracted from an "AI Today" oral Podcast: Artificial Intelligence Insights - #57 - titled  -"Is VC Funding for AI Over Heated ? "

October 3, 2018: 

See: this link:

https://itunes.apple.com/us/podcast/ai-today-podcast-artificial-intelligence-insights-experts/id1279927057?mt=2  

October 3, 2018



THREE KINDS OF MONEY


"Follow the money.  AI and its subset, machine learning, are getting                                                  a huge amount of: (1) start-up ("non-Unicorn and Unicorn") VC funding,; (2) big company funding  (Amazon, MS, FaceBook, Google, Apple, Oracle, Accenture, Twitter, IBM, etc),  and  (3) government funding (US, China, UK, France, Germany, Japan, Russia, and South Korea ( in that order) today.  


For example (according to ABI Research) , in 2017  in the USA with  its 155  AI VC companies there was  US$ 4.4 billion in just VC Unicorn-type funding (not including big company and government funding).  Chinese AI VC funding from its 19 companies for 2017 was US$  4.9 billion.  


AI  government funding and AI big company investments in   AI funding for 2017  is hard to calculate ... but consider this:  SenseTime is a Chinese big AI company. Its valued at 

US$ 4.5 billion."


________________________


'


AI SOLUTIONS MIGHT NOT WORK OUT:


"Even with all of this  AI  VC funding, it is possible that  the resulting AI solutions might not work out.   

Will AI prove itself out?  Is it the big wave promised and will the AI bubble remain inflated? AI has  tremendous promise.  Many think that the US ROI will be met.  But there is a lot of competition.  


Having the right people in your labor force is important. For example, data engineers and data scientists are both urgently needed. Data scientists do the AI deep analysis. Data engineers do the management  and cleaning of big data for use by data scientists. Data scientists do the deep analysis of clean big data. You need more data engineers than data scientists. Obviously, a data scientist needs to have very high STEM skills.


The governments of the US and China. overwhelmingly dominate the AI  race. China has both its huge tech giants  and government collaborating and working closely.  The privacy issues do not hamper AI in China.  The Chinese are adding AI to the high school curriculum as a mandatory subject.    The US has a promising AI labor force.  There are AI centers in the US  in  places like New York,  Boston (MIT, Harvard), Pittsburgh,  Seattle ,(MS, Amazon)  Washington DC, Austin, northern and southern California. 


The global AI  race is on.  Japan is soaring in AI robotics but has an aging labor force. South Korea is pushing electronics, medical, and health AI and will soon have 5000 new data engineers. UK and France are leading the way in responsible and  ethical AI. Russia believes its future rests on AI and has sizable AI funding  but lacks  the creation of VC funding by companies."


______________________


A SAMPLING OF SOME CURRENT AI APPLICATIONS


1. ARGOBOT - AI APPLICATION FOR  FARMING: Tracks the status and health of each individual strawberry to determine the best berry-specific management of each strawberry.


2. ROBORACE - AI APPLICATION FOR AUTO RACES: Race cars drive themselves in a race  tracking and managing  each vehicle in race with no human driver.


3. WILDBOOD -AI APPLICATION FOR MANAGING ZEBRAS AND ELEPHANTS:  AI enabled system identifies each animal and tracks the individual health, location, and status of each animal in an African country.


4. ICEBURG - AI APPLICATION FOR HOCKEY:  Manages the multitude of game statistics and analyzes   pros/cons of each player.


5. SMART DRONE - AI APPLICATION FOR CONTROLLING PHOTOGRAPHIC DRONES; Manages the control  and positioning  of the drone including multiple cameras in order to take the best desired photo..


6. MOTION PICTURE TRAILER DEVELOPMENT:  Motion picture companies are using AI to develop motion picture trailers based on the particular viewers of a trailer.


7. UNDERWATER ROBOTS: Underwater scientists are using AI in underwater robots to control the increasing number of harmful star fish.


8.  USE OF AI TO ASSIST IN 

SPOTTING SHARKS NEAR BEACHES

AI is used on a real time basis to locate and identify sharks that may harm humans near beaches.


_________________________



    GOOGLE AND DARPA


In June 2018, it was reported  that Google was offering its resources to the US Department of Defense for Project Maven, a research initiative to develop computer vision algorithms that can analyze drone footage. In response, more than 3,100 Google employees have signed a letter urging Google CEO Sundar  Pichai  to reevaluate the company’s involvement, as “Google should not be in the business of war,” as reported by The New York Times.


Google then banned  its development of AI software that can be used in war, business of war, and weapons.


_____________________



ACCENTURE


Accenture has the right idea.  As AI rolls in ... managers will have more time for important , strategic, and creative tasks while the  time-consuming repetitive work is done by AI.  More available time is a huge benefit  of AI. They become super-managers."



__________________________


OPEN AI vs. NATIONAL CLOSED AI 


Who will win the AGI race?

The US  WWII Manhattan Project is a good example of a successful private closed national program approach. However, today many prefer an open source type approach to the sharing of Ai information so that there is a democracy of Ai algorithms world-wide and other Ai information.  An Open Ai Charter has even been established among certain world stakeholders. Will everyone be able to play in the same play box together?


_________________________


AGI in 2042 ?


It has been said in certain Ai circles that the year 2042 will be when someone reaches AGI.   However in the technology world things happen faster than one anticipates. For example, the Wright brothers originally stated that it would take 50 years before someone could fly in a heaver than air device. After making that statement It only took the Wright brother 3 years to make their historical flight.  

_____________________



HYPER-PERSONALIZATION


“Hyper-personalization” is quite valuable in the hands and minds of today’s advertiser employing artificial intelligence (AI). Accenture  feels that about 40% of the United States  consumers have backed off their preferred products and services brands due to a lack by the advertisers' use of the  latest trends of personalization and trust. Plain  old “Personalization” is the inclusion with an advertisement that an advertiser sends to a consumer of allowable personal and transactional information in advertising, coupons, and other communications, such as: Name, Address, Title, Organization, Purchase History, Age, Address, Gender, Occupation, other similar items regarding your product or service. 


On the other hand, Hyper-personalization goes several levels higher. Amazon is a great example of hyper-personalization. It has access to certain data points such as Full Name, Age, Address, Gender, Job, Search Query, Dwell Time on web sites,, Average Time Spent On Search, Past, Purchase History, Brand Loyalty, Average Spend Amount, among other factors. Using this, the advertiser  can create a very accurate profile of you and use it to craft a highly relevant email, mailed ad, phone call, voice mail, text message, etc to the consumer. Some Hyper-personalization experts feel that Hyper-personalization effectively used in an ad contributes more to the consumers' buying decision than the actual content of the ad itself.

___________________________

         

  AI AND SIMULATIONS


We make use of simulations for all kinds of things. One common example today is teaching pilots how to fly. Another simulation is for doctors to practice various operations. So, how about using artificial intelligence (AI) and simulations to teach autonomous vehicles how to drive and to continue to improve its driving skills eventually from NHTSA Level 2 (vehicle does driving and steering while a human monitors) to NHTSA Level 5 (vehicle does it all without human assistance)? 


Sure. However, we will need 5G Networks, advanced GPS, LIDAR, Centimeter-Accurate HD Maps, as well as some other technology advances. It will take millions of simulated vehicle trips but that can be done quickly and concurrently. The hardware and software for Level 5 autonomous vehicles is ready now but the vehicles themselves may not be ready for about 5 years due to NHTSA Level 5 extensive testing  and validation.


In the USA there are about 5.5 million vehicle crashes per year that kills about 30,000 people annually. That is just in the USA. Amazing but true.

Some experts believe that by 2040 motor vehicle accidents will go down by 80% due to the use of AI in autonomous vehicles. The motor vehicle becomes safer and safer as it moves towards Level 5 AI autonomous vehicles. This will affect other things like the reduction in the price of auto insurance,  reduction of the number of auto body repair shops, reduction in the number of vehicle accident personal injury attorneys, reduction of EMS / hospital services resulting from motor vehicle related injuries, double use of the trucks' 11 hour daily driving limits, driverless RV motor homes, and cost savings in certain aspects of the autonomous vehicles since doors, windshields, seats, AC, heater, and many other items would not be required.

_____________________


AI  WILL CHANGE PRO BASEBALL


Yes - it's true. AI will substantially improve scouting, recruitment, training, performance analysis, strategy, health, fitness, and safety of pro baseball. For example,  take the new AI pitching strategy  of the New York Yankees. According to long standing baseball traditions and baseball  wisdom, the fastball (4 seam fastball or 2 seam fastball) is the very best professional  baseball  pitch to get an opposing  batter out. Since those late 1870's starting during the formative   years  of baseball  in the USA (when overhand pitching replaced underhand pitching),  the fastball was considered the best pitch to get a batter out. It is the pitch that most pitchers rely on or go to. Generally, no pro team pitches less than 50% fastballs during a 9 inning game  (except for the Yankees and  now 4 other teams are doing it). Yankees ... 43.1% fastballs and Houston ... 47.3% fastballs. The Yankees do this despite that their pitching staff throws an average of 94.3 MPH  fastballs - the fastest in baseball. Through AI analysis of pro baseball's big data the Yankees discovered that opposing batters were hitting the fastball often and missing the pitches with more deceptive movement, ball placement, and varying ball speeds (like the curve ball, slider, change of pace, fork ball, knuckle ball. etc). This is a good example how AI will challenge and change conventional thinking when conventional thinking may not be accurate.


------------------------------------


HERE, IN THE GREAT LINK BELOW, (ACCORDING TO FORBES AND CONTRIBUTOR --- BERNARD MARR), ARE THE TOP 10 AI AND ML NON-MILITARY USE CASES THAT ARE SO IMPORTANT THAT EVERYONE SHOULD KNOW ABOUT THEM:


https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-cases-for-machine-learning-and-ai/#495a8bea94c9


-------------------------------

HOW AI / ML WILL AFFECT PROJECT MANAGEMENT ?


PROJECT MANAGEMENT 

FLOW CHART:  


Project Manager (PM) -> Engage -> Approval -> Scope -> Initiate -> Plan -> Schedule -> Sequence -> Design -> Execute -> Monitor -> Report -> Control -> Quality -> Change Orders -> Product Sellers - Service Providers -Validate -> Manage -> Evaluate-> -  Close Out -> Review Lessons Learned ->Perform Scorecards  


A project manager (PM) is the person who is assigned the responsibility for the creation, operation, completion, delivery,  and success of a project by:

 (1) obtaining the project initial engagement,  (2) obtaining directions/approval of management, (3) defining scope, (4) kicking off the initiation, (5) planning, (6) scheduling, (7) sequencing, (8) designing, (9) executing, (10) monitoring, (11) reporting, (12) controlling, (13) establishing quality, (14) handling of change orders,  (15) managing product sellers/vendors, (16) managing service providers, (17) validating, managing, (18) evaluating, and (19) closing the project (including (20) reviewing the lessons-learned, as well as (21) performing a final project scorecard on the project and each seller/vendor/service provider. 


Such a PM can be found in all types of projects such as (but not limited to) construction, petrochemical, architecture, environmental, mining, manufacturing, aerospace, information technology, software development, computer hardware. insurance, legal, retail, telecommunications, health care, financial, research, and many other different industries that produce/perform/sell/license/lease products and / or services.


The PM should make sure they control “RISKS”.  All topics, issues and risks must be identified, assigned, managed, and resolved. Typically, the PM will manage project tasks under the project by using Microsoft Project Software. 


The role of PM is similar to that of a musical band leader. The band leader doesn't need to play all the instruments in order to conduct the band, so the role of PM needs to manage a team of people who have different roles and skills in a project. 

However, the PM needs the following PM skills: social, point-of-contact with customer, good communicator to all parties (internal, external, customer, stakeholders, etc), coach, mentor, listener, strong domain, technical, project at-hand knowledge & experience, team-player, persistence leadership, strategy,  and business management, proactive, quasi-psychologist, common sense, real-world mentality, problem-solving skills, and facilitator. 


AI / ML will probably affect both PMs and projects, as follows: (1) the human PM will have about 50% more time (according to Accenture LLC)  to address the serious,  and important project issues since the AI / ML will allow the AI / ML project applications to handle and resolve the repetitive minor time-consuming administrative project issues; (2) use of “smart assistants” by the human PM; (3) creation of automatic periodic risks analysis; (4) AI / ML becomes a project valuable team member; (5) use of robots; (6) creative thinking by humans to solve complex problems; (7) valuable tools for reporting and monitoring; (8) use of predictive analysis; (9) evaluating KPI’s; (10)  reducing costs and mistakes; (11) avoiding surprises; (12) early warning of surprises; (13) predictive maintenance; (14) risk removal; (15) tracking progress / performance; (16) use of chat boxes; (17) forecasting; (18) use of experimentation; and (19)  other similar activities.


PM’s will not be replaced by AL / ML but rather PM’s will be assisted by AI / ML.

A better description is that the PM will be assisted by Augmented Intelligence .

___________________________



WHAT IS ... “BAT” ?


(It has nothing to do with baseball or flying mammals).


As so reported / blogged on April 2, 2019 by Karen Hao ...

-- (at MY MPCA - mympcapital.

blogspot.com -

- "China’s AI Industry") -- 

a little more than 50% of China’s 190 leading AI/ML companies received private funding from the three largest Chinese AI/ML giant tech companies ( Baidu, Alibaba, and Tencent -   often referred to jointly as “BAT”).


Each of these BAT companies, although widely focused on many aspects of AI/ML, also has a  known expertise. For example, Alibaba is e-commerce; Tencent in social networking; and Baidu in search and information indexing. 


China has set a challenging goal to be the World Leader in AI/ML by 2030. However, China appears to be  "top heavy".  "Top Heavy," in this context, means that China is strong on the AI/ML applications but not as strong as they should be  on the fundamentals that support the AI/ML.  


China  is still behind the US in expanding AI/ML capabilities through fundamental research, algorithms, advanced silicon chips, machine vision, natural-language processing, and other AI/ML fundamental capabilities.


______________________


"2019 STATE OF AI REPORT"

(JUNE 29, 2019)


SEE THE LINK BELOW TO THIS GREAT 136 SLIDE REPORT PREPARED BY NATHAN BENAUCH AND IAN HOGARTH: 


https://www.slideshare.net/StateofAIReport/state-of-ai-report-2019-151804430


THE STATE OF AI REPORT REPORT  IS  PREPARED ANNUALLY BY NATHAN BENAUCH AND IAN HOGARTH

---------------------------


HOW AI / ML IS WORKING IN THE LEGAL SERVICES ARENA


In a recent  LexisNexis survey (according to John G. Browning and Christene Krupa Downs in their article - "The Future Is Now" in the July 2019 issue of The Texas Bar Journal) only 20 to 25% of the US  in-house legal departments currently use some  AI / ML applications.  In those low percentage of AI / ML  companies, generally only one legal domain area is being addressed.  As compared to a company’s  in-house  Finance and HR departments, those departments of a company are twice as likely to use AI / ML applications than in-house legal.


Take the Coca-Cola’s legal department for example. By using AI / ML applications they have reduced a standard legal agreement for review from 10 person hours to about 15 minutes per document.


In another case, JP Morgan Chase & Co. has saved over 360,000 person hours of legal services time in the last year due to its AI / ML applications and the use of Chase’s own AI / ML platform called “Contract Intelligence”.


Likewise, many outside private counsel firms are using AI / ML to reduce time charged to their clients, be more competitive,  perform due diligence, do document review, perform predictive analysis, do AI / ML assisted legal research, use of AI / ML applications for damages models, do verdict prediction, perform predispositions of judges, create cost-saving, and do many other types of legal AI / ML that make lawyers more efficient and effective. This is especially true due to the huge amounts of legal “Big Data” that is now available. 


Interestingly, outside legal counsel are the most  intrigued with the AI / ML applications related to cost savings and predictive analysis.


The general consensus in the legal community is that, due to AI / ML, legal professionals at the lower service levels may experience declining numbers. However, AI / ML will benefit the legal profession by enhancing what lawyers do and freeing them up for more important, meaningful, creative, and fulfilling work.

________________________

--------------------------->

CONTINUE TO 

 COLUMN #3

______________________>

________________________


WORK IN PROGRESS

"Do it -- Fix It -- Try It"

Chaotic action is preferable to orderly inaction 


This web site will always be a ..."Work In Progress." 


 Changes, updates, additions, .and deletions will be made monthly. The last update to this vertical column of this web site was made July 18, 2019


________________________________


Cookie Policy

This website uses cookies. By continuing to use this site, you accept our use of cookies.


++++++++++++++++++++



(C) COPYRIGHT JOHN E. MILLER , RUSS PETERMAN, 

AND DR QIN SHENG  2018 - 2019

ALL RIGHTS RESERVED (EXCEPT AS NOTED HEREIN WHERE ANOTHER PARTY OWNS A 

COPYRIGHT INTEREST).                                                                                                     

John ("Johnny") E. Miller
Co-Founder
Texas Attorney


3.  JOHN (JOHNNY) E. MILLER

CO-FOUNDER

- MEMBER - ADVISOR

THE GOOD US AI GROUP

( GoodUSAi.com )


JOHNNY MILLER

BA, JD, LLM, CPCM


Baylor University

BA 1967


University of Memphis 

Law School

JD 1973


University of Missouri (KC)

Law School

LLM 1980


National Contracts Management Association

CPCM 2007


THE JOHN E. MILLER LAW OFFICE

TEXAS ATTORNEY

and

CON-TRACTS.COM CONSULTING

TEXAS

____________

COLUMN  # 3 

\_______/_

\_____/

V


1.  HERE IS A SUMMARY  OF A PORTION OF THE ARTICLE: "GAME CHANGING TRENDS TO LOOK OUT FOR WITH AI ." 

See:

https://medium.com/@WisewolfFund_io/unique-trends-to-look-out-for-with-artificial-intelligence-1db3de178463

THIS  IS AN INTERESTING PLAIN-ENGLISH ARTICLE ABOUT THE FUTURE OF AI 


The author advises:  "A recent report by McKinsey states that Baidu, the Chinese equivalent of Alphabet spent $20 billion in AI last year. 


At the same time, Alphabet invested roughly $30 billion in developing AI technologies. The Chinese government has been actively pursuing AI technology in an attempt to control a future cornerstone innovation. Companies in the US are also investing time, money and energy into advancing AI technology. 

The reason for such interest towards artificial intelligence is that artificial intelligence can enhance any product or function. This is why companies and governments make considerable investments in AI."


The author concludes by stating: 

"Therefore, the best approach is not to wait until AI leaves you unemployed, but rather proactively embrace it and learn to live with it. As we said already, AI can also create jobs, so a wise move would be to learn to manage AI-based tools. With the advance of AI products, learning to work with them may secure you a job and even promote your career.   ... The wisest strategy is to embrace artificial intelligence and let it work to maintain our well-being. "


_________________________



2.  HERE IS ANOTHER  SUMMARY OF AN INTERESTING ARTICLE ABOUT : "HOW TO PREPARE YOURSELF AND YOUR CAREER FOR AN AI - FUTURE"

BY AUTHOR

Kasper Nymand  kaspernymand.com/  


Mr. Nymand  states:  "The future is here. It’s time to rethink your position in the job market. It’s time to question your current career path, and consider if it would be wise to make a few changes. Bots and intelligent assistants / agents are on the rise, ready to disrupt and turn the job market on its head. Now, it has always been key in life to stay up-to-date, grow and develop yourself and your knowledge base. But now more than ever this is definitely true.


AI is expected to eliminate 6% of jobs by 2021, according to Forrester, and a further 47% is expected in the next two decades, according to a US Federal report. Those are current types of jobs, but the evolution will very likely create new types of jobs that we haven’t really been thinking about yet."


The author further states: "What this all means is simply that you need to keep yourself in the loop. You need to keep following the newest trends and tendencies in your market, and just generally beware that things are going to change. But remember, it's most likely not going to be the end of your career."

 The author offers the following advice:

"We should all take the time to do this simple, yet comprehensive, exercise every now and then. Nobody is safe in a time with intelligent machines. We’re all in the same boat. Some are just closer to the edge than others. Get up and move as close to the wheelhouse as possible. Use your imagination, be creative and open to new combinations and collaborations within and across industries. Innovation and disruption will happen eventually, it’s just a matter of whether you’ll be in charge or somebody else will."

 

Author: Kasper Nymand

ABOUT THE AUTHOR OF THE ABOVE ARTICLE


_____________________



CHECK THIS LINK TO READ 60  GREAT AI ARTICLES WRITTEN BY  ACCENTURE:

https://www.accenture.com/us-en/insights/artificial-intelligence-index


____________________

UNILEVER HR USE OF AI


Unilever hires many people and sells a multitude of products  worldwide. It has massive duties in dealing with employee recruitment, interviewing, employee selection, and managing employees, Thus the Unilever HR departments have huge  efforts in dealing with this very important area of Unilever.  See the following link to  understand  how Unilever is creatively  and efficiently addressing this HR issue using AI (machine learning and neural networks):   https://www.businessinsider.com/unilever-artificial-intelligence-hiring-process-2017-6


____________________


WSJ Article


Check out this link to a good WSJ article about how savvy lenders are using AI to better analyze potential borrowers.  Lenders, with the help of AI, are completing  a more thorough risk management analysis of potential loans  and as a result are making more risk-appropriate loans to more borrowers who meet the acceptability standards:    https://www.wsj.com/articles/ai-helps-auto-loan-company-handle-industrys-trickiest-turn-11546516801 


______________________


OPAQUE BLACK BOX


In XDNET's  article "Inside the Black Box:  Understanding AI Decision Making" Charles McLellan states:" AI algorithms are increasingly influential in peoples' lives, but their inner workings are often opaque." This article discusses what is being done about that problem.  We need to be able to peek under the hood and understand why AI makes decisions. Of course, not everyone agrees with that sort of visablity because humans may not be able to understand and explain.


______________________


FUTURE OF AI, ANI, ACI, AND ASI (SEE LINK AND TEXT BELOW)

https://www.sciencealert.com/the-risks-of-advanced-artificial-intelligence-are-real-we-need-to-act-now


Here is a very good article that addresses the possible future of AI, ANI, AGI, and  ASI in as early as 2029:


Title:  "The Risks of Advanced AI Are Real. We Need to Act Before It's Too Late, Warn Experts"


BY PAUL SALMON, PETER HANCOCK & TONY CARDEN, THE CONVERSATION

FEBRUARY 01, 2019

See:

https://www.sciencealert.com/the-risks-of-advanced-artificial-intelligence-are-real-we-need-to-act-now


"Artificial intelligence can play chess, drive a car and diagnose medical issues. Examples include Google DeepMind's AlphaGo, Tesla's self-driving vehicles, and IBM's Watson.

This type of artificial intelligence is referred to as Artificial Narrow Intelligence (ANI) – non-human systems that can perform a specific task. We encounter this type on a daily basis, and its use is growing rapidly.


But while many impressive capabilities have been demonstrated, we're also beginning to see problems. The worst case involved a self-driving test car that hit a pedestrian in March. The pedestrian died and the incident is still under investigation.

The next generation of AI

With the next generation of AI the stakes will almost certainly be much higher.

Artificial General Intelligence (AGI) will have advanced computational powers and human level intelligence. AGI systems will be able to learn, solve problems, adapt and self-improve.

They will even do tasks beyond those they were designed for.

Importantly, their rate of improvement could be exponential as they become far more advanced than their human creators. The introduction of AGI could quickly bring about Artificial Super Intelligence (ASI).

While fully functioning AGI systems do not yet exist, it has been estimated that they will be with us anywhere between 2029 and the end of the century.

What appears almost certain is that they will arrive eventually. When they do, there is a great and natural concern that we won't be able to control them.


The risks associated with AGI

There is no doubt that AGI systems could transform humanity.

Some of the more powerful applications include curing disease, solving complex global challenges such as climate change and food security, and initiating a worldwide technology boom.

But a failure to implement appropriate controls could lead to catastrophic consequences.

Despite what we see in Hollywood movies, existential threats are not likely to involve killer robots.

The problem will not be one of malevolence, but rather one of intelligence, writes MIT professor Max Tegmark in his 2017 book Life 3.0: Being Human in the Age of Artificial Intelligence.

It is here that the science of human-machine systems – known as Human Factors and Ergonomics – will come to the fore.

Risks will emerge from the fact that super-intelligent systems will identify more efficient ways of doing things, concoct their own strategies for achieving goals, and even develop goals of their own.

Imagine these examples:

an AGI system tasked with preventing HIV decides to eradicate the problem by killing everybody who carries the disease, or one tasked with curing cancer decides to kill everybody who has any genetic predisposition for it

an autonomous AGI military drone decides the only way to guarantee an enemy target is destroyed is to wipe out an entire community

an environmentally protective AGI decides the only way to slow or reverse climate change is to remove technologies and humans 

that induce it.


These scenarios raise the spectre of disparate AGI systems battling each other, none of which take human concerns as their central mandate.

Various dystopian futures have been advanced, including those in which humans eventually become obsolete, with the subsequent extinction of the human race.

Others have forwarded less extreme but still significant disruption, including malicious use of AGI for terrorist and cyber-attacks, the removal of the need for human work, and mass surveillance, to name 

only a few.

So there is a need for human-centred investigations into the safest ways to design and manage AGI to minimise risks and maximize  the benefits .   

_______________________


POTENTIAL USES OF AI AND MACHINE LEARNING IN USA EDUCATION


It is estimated by Cognilytica, in their #87 "AI Today" Podcast, that by 2024 six billion US dollars will be spent annually in the USA on educational AI and machine learning.


 The types of educational case studies that are anticipated are: augumation of teachers on non-instructional tasks; tutoring; hyper-personalized learning; AI classroom assistants / robots; voice systems; and possibly students advancing at their own  individualized learning pace with hyper-personalized  academic content regardless of a student's grade level.

———————


__________________________

TRUCKS - TRUCKS - TRUCKS !

USING AV TECHNOLOGY


Our nation's highways are packed with trucks. Most are driven by competent  professional drivers. However, some are driven by careless unprofessional drivers.  According to Chris Spear -- President and CEO of the American Trucking Associations (ATA) -- as stated on the ATA web site -- the current estimates are that there are 3.5 million truck drivers  in the USA. In fact, the USA needs roughly 90,000 more truck drivers a year for the next decade (according to ATA) to keep up with demand.  (See; https://trucking.org). 

Self-driving trucks using autonomous vehicle  (AV)  technology can drive more than the current 11 hour daily driving limit and do not need breaks for food, restroom use or rest.

However, the driver-less trucks will not be doing “dock to dock" runs for a  long time.  It may be a future in which self-driving trucks using AV technology drive  the long highway miles between what they call transfer hubs, where human drivers will take over for the last miles through complex urban and industrial areas. So, 

self-driving trucks may be complementing humans, not completely replacing them. AV technology holds enormous collaborative potential for the trucking industry, its drivers and the motoring public.


With 94% of highway accidents attributed to human error, the successful deployment of AV technology can drastically reduce fatalities on the road. (See: https://medium.com/.../why-automated-vehicle-technology-holds-enormous-potential-...

Sep 14, 2017).  Moreover, the technology can deliver significant returns by reducing traffic congestion, improving driver productivity and decreasing emissions through lower fuel burn.

_____________________


SOME INITIAL IDEAS ON HOW TO MONETIZE AI and ML. ... NOW


Obviously, a company that has invested a lot of time, energy, and resources in getting its own company ready for AI and ML  applications in order  to benefit its own organization will want to implement beneficial applications internally for its own company. 


However, why not get started now with some of that "low hanging fruit" type ROI.


At the right time (not too soon or too late) start the process of initially monetizing ROI. (Keep in mind that it's  ..."the second mouse that gets to eat the cheese").


1.  Provide tools for people to build there own solutions.

It is kind-of like how during the gold rush in the western USA in the 1800's the first folks to profit from the gold rush were not the gold miners but rather the merchants selling wheel barrels, picks, shovels, and other tools to facilitate the gold mining. So selling AI and ML related tools (products), like various machine learning foundational platforms, can be profitable. The key word is here "tools."

  

2.  Leverage the power of AI and ML for numerous AI and ML activities involving ordinary consumer activities, such as conversational chat bots,  special Siri-like domain-specific products, and chat boxes, so as to give the ordinary consumer a taste of AI and ML.  Other examples here are things like Uber, on-demand insights, and language recognition.  


3. Explore the intersection of   AI / ML and enterprise / company business processes so as to help the business save time, to make more money, to reduce costs, to improve safety, to be more efficient, to gain more insights,  to improve compliance, to improve customer services, and to examine and improve company processes.


4. Provide AI and ML services and consulting in unstructured data, structured data, big data, algorithms, artificial neural networks, robotics, robotic vision, drones, math services , statistical services,  legal services, facial recognition, voice recognition, speech recognition, deep learning, signal processing, and other services related to ML and  AI.


5.  Sell ownership or license access  of Big Data owned or legally acquired by your company  to customers for use with customers' AI and ML projects.


6. Create an indirect sales channel by engaging resellers, value added resellers, 

integrators,  and sales reps that will market and sell your Big Data.


7. Create direct and indirect sales channels of all other individual AI  and ML components.


8.  Establish education and training programs for AI and ML .


9.  So as to proactively encourage  world-wide equal-access democratization of certain open source  non-proprietary AI and ML information, data, hardware products, software  items, and other Al and/or MI relevant things, the Parties  state the following:

The Parties will attempt to create a  non-binding informal Joint Cooperation Agreement (JCA) between certain  companies or other entities (i.e. universities, government  organizations, research organizations, etc) that have relevant  AI and ML experts working for or engaged by such companies or other  entities. The JCA companies or entities would meet  periodically(electronically or in-person)  to discuss open source  non-proprietary AI and ML issues.


_________________________



THE FACIAL RECOGNITION ASPECT OF AI AND MACHINE LEARNING


According to the Gemalto web site (now part of the Thales Group)  [See:   https://www.thalesgroup.com ] it states - ”Facial recognition is the process of identifying or verifying the identity of a person using their face. It identifies, captures, analyzes, and compares patterns based on the person's facial details. The face detection process is an essential step as it detects and locates human faces in-person and in images and video. The face capture process transforms  analog information (a face) into a set of digital information (data) based on the person's facial features. The face match process verifies if two faces belong to the same person.”


Also, on the Gemlto web site (See link above), it is stated: “Biometrics are used in assisting one in identifying and authenticating a person using a set of recognizable and verifiable data unique and specific to that person.  2D or 3D sensor "captures" a face. It then transforms it into digital data by applying an algorithm, before comparing the image captured to those held in a database. These automated systems can be used to identify or check the identity of individuals in just a few seconds based on their facial features: spacing of the eyes, bridge of the nose, contour of the lips, ears, chin, etc. They can even do this in the middle of a crowd and within dynamic and unstable environments.”  


Apple, Facebook, Google, IBM, Oracle, Accenture, MIT, Harvard, Stanford, Amazon, USA, UK, Russia, China, India, Japan, Canada, and others are rapidly researching, developing, and applying facial recognition products and services. 

The following recognition signatures using the human body are also applied: fingerprints, iris scans, voice recognition, digitization of veins in the palm of the hand, and other behavioral criteria. Those biometrics  (for the most part) are used to protect internet based monetary transactions  where illegal/unlawful cyber actions have been rapidly expanding. 


Why is facial recognition so enamored by Ai personnel today? Facial biometrics continues to be the widely preferred biometric benchmark. That's because it's easy to plan, prepare, deploy, implement, and analyze feedback. There is no hampering or interfering physical interaction required by the facial recognition user. Additionally, face detection and face match procedures for implementation,  identification, and verification are so amazingly quick.

Facial recognition use cases today currently include law enforcement identifications, lost persons identification, military identification uses, social media identification / tracking, identification of threats / risks in large venues ( i.e. stadiums, airports,  stations, festivals, political gatherings, and other facial reconization uses.

______________________


5G and AI CAN WORK TOGETHER FOR GOOD 


· 5G is the next-generation wireless mobile communication technology. It will improve internet and telecom. 2G included texting. 3G included browsing. 4G allowed for wireless video conferencing. 

· Qualcomm, Verizon, Sprint, AT&T, Erickson, and other 5G providers are currently rolling out 5G in 22 USA test cities. 

· 5G will create huge improvements in traditional mobile communications systems and traditional networks. 

· 5G will increase the efficiency and innovation in both the business/industrial and consumer sectors. 

· Much of the innovation 5G will enable is currently unknown. 

· 5G will be robust and will enable quick downloads. With 3G, you would be able to download an average HD movie in about 25 hours, with 4G it would be less than 10 minutes, and with 5G, it would be about as 4 seconds. 

· 5G will enable “smart” cities and“clever” countrysides. 

· AI will soon enable machines and systems to function with intelligence levels similar to (or better than) that of humans. 

· Artificial intelligence (AI) and Machine Learning (ML) promise many beneficial use applications, however, the required AL/ML processing speed is currently a limiting challenge. 

· With 5G wireless technology, the current AI processing challenge will be much less of a barrier. 

· 5G will soon be ready and able to provide the requisite speed that will increase the processing capabilities of AI. 

· As a result of 5G, AI gets to analyze data much faster and to learn much faster. 

· AI applications are currently being integrated into devices, rather than waiting for 5G to be developed and deployed. 

· With 5G working online enabling simulations for analysis, reasoning, data fitting, clustering and optimizations, AI will become more reliable and accessible. 

· 5G and AI integration will happen on the same chips on mobile smartphones, making those phones even more intelligent. 

· 5G will serve as the basic technology for future Internet of Things ( IoT ) technologies. 

· 5G will support the IoT applications of in various fields, including business, manufacturing, healthcare, academia, and transportation. 

· 5G will enable the future massive network plans. 

· Currently device-based processing is being used with AI. 

· 5G will narrow the divide between processing in the cloud and processing on devices. 

· 5G will have the speed to provide the services needed in the cloud. 

· The narrowing the divide between cloud and on-device processing will be reduced with 5G. 

· USA 5G will face strong competition from Huawei of China. 

· 5G and AI need to be prepared for initial and on-going robust IP piracy and cyber-security threats.


+++++++++++++++++++++


POTENTIAL FUTURE OF AI / ML


The US AI / ML market place is projected by some knowledgeable individuals to potentially (all things considered) reach $70 billion by 2020 with a potential for AI / ML  to also be unbiased, responsible, ethical, safe, legal, exhibit common sense, and good … not bad or evil. (Note: Gartner says that by 2021 AI Augmentation will generate $2.9 trillion in "business value").

Generally, in the US, about 63%, according to Price Waterhouse Cooper (Pwc), believe AI may allow humans to spend more time engaged in high-level thinking, be allowed to have more fulfilling activities, exhibit more creativity, and be involved in logical decision-making. On the other hand in the U ,(according tp Pwc), about 46% believe AI will harm people by taking away jobs and about 23% believe it will have serious, negative results.

The majority (or near majority) of US consumers, business executives, and subject-matter experts generally  believe that AI will: improve health (including diseases such as cancer, heart related disease, diabetic issues, etc.), improve access to needed medical care, better access to legal assistance, improve transportation issues,  encourage effective clean energy, improve gender equality, improve cyber security, better safeguard privacy, improve education, enhance economic growth, improve solutions for climate change, provide for more income equality, promote financial security, better track down fraud, and proactively provide fraud protection. 

The business case for AI / ML is more productivity and return on investment. AI needs to be monetized. 

It looks like the effect of structured clean Big Data means less repetitive tasks and more opportunities for collaboration.

Big Data is quickly becoming the new oil.

As a particular AI / ML user case becomes more and more important - it then becomes less and less noticeable over time.

P.S.   AI / ML may also be able to improve traffic conditions in Austin.


_________________________



AI / ML WILL ENHANCE CONTRACTS MANAGEMENT


THE NATIONAL CONTACT MANAGEMENT ASSOCIATION (NCMA) describes “Contracts Management” as follows:  "Contracts Management is a profession that includes many positions along the buying and selling chain, including jobs within the federal government, state and local governments, industry, commercial businesses, academia, and more." 


Contracts management professionals strive to: (1) Manage customer and supplier expectations and relationships, (2) Manage budgets,  (3) Control risks,  (4) Manage costs,  and  (5) Contribute to organizational success. 


Contracts management integrates a broad set of business disciplines and involves working closely with all areas and departments within an organization.

.

Contracts management involves the proactive management of a wide variety of commercial, international, government, collaborative, consortial, relationship, and other agreements in accordance with  best practices, applicable entity policies and procedures, compliance programs, applicable laws, and the other requirements of the parties. 


It generally encompasses contract planning, contract designing, contract drafting, contract negotiation, contract execution, contract summary document, brief personnel on contract contents, contract insurance management, subcontracts, creation and management, modifications, contract administration, use of best practices, export compliance, contract close-out, contract assessment, lessons learned activities, and other similar items. 


AI/ML aspects will improve contracts management as follows:


1. Digitizing contracts and important letters and other documents;

2. Creating a contracts central repository;

3.   Improving organization strategy; and

4. Better managing legal, contractual, operational, and performance 'RISKS' (with contracts management software,   5. limiting project access, 6. limiting contractual access, 7. limiting other access, 8. tracking milestones, 9. complying with confidentiality requirements,, 

10. complying with IP requirements.  

11. complying with insurance requirements, 12. understanding the applicable  legal compliance issues, 

13. tracking KPI's, and other similar activities.


Contracts Management personnel  will not be replaced by AL / ML but rather Contracts Management personnel  will be assisted by AI / ML.

___________


AI GUIDELINES


Facebook, Google and Stanford University have created “AI Ethics Research Centers”. 

Canada and France have jointly created an international panel to discuss AI's "responsible adoption."

 The European Union (EU) has its own seven (7) guidelines seeking a "trustworthy AI.”

A summary of the EU's seven (7) guidelines is stated below. One can read the full PDF of the guidelines and the below summary here at: 

https://www.engadget.com/2019/04/08/eu-ai-ethics-guidelines/ )

- EU Guideline Summary -

• Human agency and oversight: AI systems should enable equitable societies by supporting human agency and fundamental rights, and not decrease, limit or misguide human autonomy.

• Robustness and safety: Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of AI systems.

• Privacy and data governance: Citizens should have full control over their own data, while data concerning them will not be used to harm or discriminate against them.

• Transparency: The traceability of AI systems should be ensured.

• Diversity, non-discrimination and fairness: AI systems should consider the whole range of human abilities, skills and requirements, and ensure accessibility.

• Societal and environmental well-being: AI systems should be used to enhance positive social change and enhance sustainability and ecological responsibility.

• Accountability: Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes.

This 7 item Summary of the EU Guidelines can be found

on the engadgetb web site - "The EU Releases Guidelines To Encourage Ethical AI Development"

       Earlier this year on February 19, 2019 President Trump issued an Executive Order on US AI leadership that can be found on the below Harvard Law web site:


https://jolt.law.harvard.edu/digest/president-trump-issues-executive-order-to-maintain-american-leadership-in-artificial-intelligence



Please note that the US federal government  did not provide any additional AI funding when it issued these guidelines _________________

___

_____

___________

_____________


WORK IN PROGRESS


"Do it -- Fix It -- Try It"

Chaotic action is preferable to orderly inaction 


This web site will always be a ..."Work In Progress".


_____________________


Changes, updates, additions, and deletions will be made weekly. The last update to this web site was made on:  

July 18 , 2019


_________________________


Cookie Policy, Privacy Policy, and Terms of Use:


This website uses Cookies. By continuing to use this site, you accept our Cookies Policy.


We maintain all aspects your Privacy with regard to all applicable matters.  By continuing to use this site, you accept our Privacy Policy.


We agree to comply with the contracts law and other applicable laws of the State of Texas USA.  Also, we agree to comply   all additional laws to the extent applicable.  By continuing to use this site, you accept our Terms of Use.


++++++++++++++++++++


(C) COPYRIGHT JOHN ("JOHNNY") E . MILLER, RUSS PETERMAN, AND QIN ("TIM") SHENG

 2018 - 2019

ALL RIGHTS RESERVED  EXCEPT AS NOTED HEREIN WHERE ANOTHER PARTY OWNS A COPYRIGHT INTEREST 







_________THE END ________

________________________

     _______________

_________

_____




Contact Us

CONTACT

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Johnny@JohnnyAttorney.com
512 619 7512

This web site is a work in progress.

Johnny@JohnnyAttorney.com


Good United States Artificial Intelligence

Texas USA

(512) 619-7512